EFFICIENT CARBON-CARBON BOND FORMATION WITH THERMALLY STABLE 1,1-DIHALO-2,2,2-TRIFLUOROETHYLZINC REAGENT

Makoto Fujita, Tomoe Morita, and Tamejiro Hiyama*

Sagami Chemical Research Center 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229, Japan

The zinc carbenoids CF_3CX_2ZnX , prepared from CF_3CX_3 and zinc powder in dimethylformamide, were found thermally stable to add to aldehyde carbonyls in excellent yields.

In view of remarkable biological activity of CF_3 -containing compounds,¹ extensive studies on perfluoroalkylmetals have been made.² As synthetic pyrethroids containing CH=C(Cl)CF₃ group are recently found highly potent, we explored their synthetic method through employment of a carbenoid reagent, CF_3CX_2 -Mtl (1, X=Cl,Br). The only one example recorded so far is the corresponding Grignard reagent CF_3CX_2MgX (1a),³ which is labile and undergoes carbonyl addition in poor yields even at low temperatures. We report herein that the 2,2,2-trifluoro-1,1-dihaloethylzinc halides (1b) are readily prepared from commercially available 1,1,1-trifluoro(trihalo)ethanes and zinc powder in dimethylformamide (DMF) and are thermally stable enough to add to aldehyde carbonyls in good yields without appreciable decomposition.

When 1,1,1-trichlorotrifluoroethane was added to a suspension of small excess of zinc powder⁴ in DMF in the presence of CuCl catalyst⁵ (5 mol%) at room temperature, exothermic reaction took place, and most of the zinc was consumed within 1 h. Formation of the zinc reagent **1b** (X = Cl) was confirmed by ¹⁹F-NMR analysis.⁶ At the expense of the peak of CCl₃CF₃ (δ 81.1), a new peak appeared at δ 72.3. This peak may be assigned as that of **1b** (X = Cl), since quantitative formation of CF₃CCl₂H⁷ was observed upon hydrolysis. The

Table 1. Aldehyde addition of CF₃CX₂ZnX.^a

run	aldehyde	CX ₃ CF ₃ ^b	conditions	product ^C	% yield ^d
1	(2)	cc1 ₃ CF ₃ (1.2)	rt, 3 h - 50 °C, 2 h	OH CCl2CF3	86
2	2	CC1Br ₂ CF ₃ (1.2)	0 °C, 0.5 h- 50 °C, 2 h		23 ^e
3	2	CBr ₃ CF ₃ (1.5)	0 °C, 0.2 h - rt, 3.5 h		27
4	<0,0,℃HO	CC1 ₃ CF ₃ (1.2)	0 °C, 0.2 h- 50 °C, 2 h		80
5	стосно	CC1 ₃ CF ₃ (1.5)	0 °C, 0.2 h– 50 °C, 2 h		87
6	CI CHO	CC1 ₃ CF ₃ (1.2)	rt, 0.5 h - 50 °C, 4.5 h		96
7	Стено	CC1 ₃ CF ₃ (1.2)	rt, 1 h - 50 °C, 17 h		82
8	Досно (3)	CC1 ₃ CF ₃ (1.5)	60 °C, 12 h	OH CCI2CF3 (4)	22
9	3	cc1 ₃ CF ₃ (1.5)	50 °C, 8 h ^{f,g}	4	60
10	3	CC1 ₃ CF ₃ (1.5)	50 °C, 8 h ^h	4	61 ^e
11		CC1 ₃ CF ₃ (1.5)	50 °C, 8 h ⁱ	4	72 ^e
12	3	cc1 ₃ CF ₃ (1.5)	rt - 50 °C, 3 h ^j	4	83 ^e
13	Сно	CC1 ₃ CF ₃ (1.2)	0 °C, 0.3 h - 50 °C, 12 h		60
14	○ ^{CH0} (5)	CC1 ₃ CF ₃ (1.2)	0 °C, 0.3 h — 50 °C, 23 h) 16

^aThe ratio $CX_3CF_3/Zn = 1.0-1.2$. Reactions were carried out in DMF (1 mL/mmol). ^bValues in the parentheses are mol-equiv. to the aldehyde. ^CAll the new compounds gave satisfactory elemental analysis. ^dIsolated yields unless otherwise noted. ^eGlc yield. ^fThe aldehyde 3 was added dropwise over 1 h after 1b was prepared. ^gEmploying CuCl catalyst (5 mol%). ^hEmploying PdCl₂(PPh₃)₂ catalyst (1 mol%). ⁱEmploying NiCl₂(PPh₃)₂ catalyst (1 mol%). ^jCarried out under ultrasonic irradiation (250 W). ^kAr = 2-methyl-3-phenylphenyl. ¹A mixture of (1R*,3R*)- and (1R*,3S*)-isomers (6 : 1). ^mOnly (1R*,3R*)isomers were isolated. ⁿA yield based on the consumed starting material.

reaction with carbon dioxide gave 2,2-dichloro-3,3,3-trifluoropropanoic acid (18 % yield).⁸ Thermal stability of **1b** (X = Cl) deserves particular attention: no decomposition of **1b** (X = Cl) was observed in DMF solution after several days at room temperature. The zinc reagent **1b** (X = Cl) was prepared in tetrahydrofuran (THF) solution also in a similar manner.

The synthetic utility of 1b is demonstrated by aldehyde addition. Zinc powder (22 mmol) was added portionwise to the solution of benzaldehyde (20 mmol) and 1,1,1-trichlorotrifluoroethane (24 mmol) in DMF (20 mL) at room temperature. The reaction mixture was stirred for 3 h at 50 °C. Workup followed by distillation gave 2,2-dichloro-3,3,3-trifluoro-1-phenyl-1-propanol in 86 % yield. Other examples are summarized in Table 1.^{9, 10} The reaction with aromatic aldehydes proceeded smoothly in good yields. Though some aliphatic and α,β -unsaturated aldehydes gave low yields, the addition of CuCl, PdCl₂(PPh₃)₂, or NiCl₂(PPh₃)₂ catalyst or ultrasonic irradiation improved the yields significantly (runs 9-12, and 15). Other 1,1,1-trifluorotrihaloethanes (CClBr₂CF₃ and CBr₃CF₃) were applicable, though the yields were inferior (runs 2, 3, and 17).

The present reaction provides a new practical way for the introduction of CF_3CCl_2 group which itself is a partial structure of some precursors of biologically interesting compounds.¹¹ In particular, the CF_3CCl_2 adducts of types 4, 7, and 8 are key intermediates of CF_3 -containing synthetic pyrethroids as is described in the following paper.

References and Notes

- (a) R. Filler and Y. Kobayashi (Eds.) "Biomedical Aspects of Fluorine Chemistry", Elsevier Biomedical Press, Amsterdam, 1982. (b) F. A. Smith, CHEMTECH, 1973, 422. (c) R. Filler, *ibid.*, 1974, 752.
- Carbonyl addition of Rf-Mtl compounds: (a) Mtl = Li: O. R. Pierce, E. T. McBee, and G. F. Judd, J. Am. Chem. Soc., 76, 474 (1954); R. D. Chambers, W. K. R. Musgrave, and J. Savory, J. Chem. Soc., 1962, 1993; P. G. Gassman and N. J. O'Reilly, Tetrahedron Lett., 26, 5243 (1985). (b) Mtl = Mg: R. N. Haszeldine, J. Chem. Soc., 1952, 3423; R. N. Haszeldine, *ibid.*, 1953, 1748; R. N. Haszeldine, *ibid.*, 1954, 1273; D. D. Denson, C. F. Smith, and C. Tamborski, J. Fluorine Chem., 3, 247 (1973/4); C. F. Smith, E. J. Soloski, and C. Tamborski, *ibid.*, 4, 35 (1974); L. S. Chen, G. J. Chen. And C. Tamborski, *ibid.*, 26, 341 (1984). (c) Mtl = Zn: T. Kitazume and N. Ishikawa, Chem. Lett., 1981, 1679; N. Ishikawa, M. Takahashi, T. Sato, and T. Kitazume, J. Fluorine Chem., 22, 585 (1983); N. J. O'Reilly, M. Maruta, and N. Ishikawa, Chem. Lett., 1984, 517; T. Kitazume and N. Ishikawa, J. Am. Chem. Soc., 107, 5186 (1985); S. Benefice, H. Blancou, and A. Commeyras, Tetrahedron, 40, 1541 (1984). (d) Mtl = Ca: G. Santini, M. L. Blanc, and J. G. Riess, J. Chem. Soc., Chem. Commun., 1975, 678; G. Santini, M. L. Blanc, and J. G. Riess, J. Organomet. Chem., 140, 1 (1977). (e) Mtl = Mn: K. Kitazume and N. Ishikawa, Nippon Kagaku Kaishi, 1984, 1725.
- 3. I. Hemer, A. Pošta, and V. Dědec, J. Fluorine Chem., 26, 467 (1984).
- 4. Commercially available zinc powder was washed successively with dilute HC1, water, and methanol and dried under reduced pressure.
- Zinc-copper couple: H. E. Simmon, T. L. Cairns, and S. A. Vladuchick, Org. React., 20, 1 (1973).
- Trichlorofluoromethane was employed as the internal standard. Chemical shifts are given as positive value for upfield shift.
- 7. This compound was directly isolated from the resulting reaction mixture by distillation. ¹H-NMR (CDCl₃) δ 6.00 (q, J = 4.7 Hz); ¹⁹F-NMR (CDCl₃) δ 77.6 (d, J = 4.7 Hz)].
- 8. Ger. Offen. 1,900,7588; Chem. Abstr., 73, 87470g.
- 9. In tetrahydrofuran solvent, no aldehyde addition took place, though the zinc reagent 1b was prepared.
- 10. Attempted reactions of 1b (X = C1) with ketones and benzoyl chloride failed.
- (a) P. Martin, J. Streith, G. Rihs, T. Winkle, and D. Belluš, *Tetrahedron Lett*, 26, 3947 (1985).
 (b) US pat. 4,469,896 (1983).
 (c) US pat. 4,351,961 (1979).

(Received in Japan 13 March 1986)